Application of Metamodel-assisted Multiple-gradient Descent Algorithm (mgda) to Air-cooling Duct Shape Optimization
نویسنده
چکیده
MGDA stands for Multiple-Gradient Descent Algorithm was introduced in [1]. In a previous report [2], MGDA was tested on several analytical test cases and also compared with a well-known Evolution Strategy algorithm, Pareto Archived Evolution Strategy (PAES) [3]. Using MGDA in a multi-objective optimization problem requires the evaluation of a substantial number of points with regard to criteria, and their gradients. In industrial test cases, in which computing the objective functions is CPU demanding, a variant of the method was to be found. Here, a metamodel-assisted MGDA is proposed and tested. The MGDA is assisted by a Kriging surrogate model construction. A first database is computed as an Latin Hypercube Sampling (LHS) distribution in the admissible design space, which is problem-dependent. Then, MGDA leads each database point to a non dominated set of the surrogate model. In this way, each function computation is made on the surrogate model at a negligible computational cost.
منابع مشابه
Comparison between two multi objective optimization algorithms : PAES and MGDA. Testing MGDA on Kriging metamodels
In multi-objective optimization, the knowledge of the Pareto set provides valuable information on the reachable optimal performance. A number of evolutionary strategies (PAES [4], NSGA-II [3], etc), have been proposed in the literature and proved to be successful to identify the Pareto set. However, these derivativefree algorithms are very demanding in computational time. Today, in many areas o...
متن کاملCooperation and competition in multidisciplinary optimization - Application to the aero-structural aircraft wing shape optimization
This article aims to contribute to numerical strategies for PDE-constrained multiobjective optimization, with a particular emphasis on CPU-demanding computational applications in which the different criteria to be minimized (or reduced) originate from different physical disciplines that share the same set of design variables. Merits and shortcuts of the most-commonly used algorithms to identify...
متن کاملComparison between MGDA and PAES for Multi-Objective Optimization
In multi-objective optimization, the knowledge of the Pareto set provides valuable information on the reachable optimal performance. A number of evolutionary strategies (PAES [4], NSGA-II [1], etc), have been proposed in the literature and proved to be successful to identify the Pareto set. However, these derivative-free algorithms are very demanding in terms of computational time. Today, in ma...
متن کاملMultiple-Gradient Descent Algorithm (MGDA)
In a previous report [3], a methodology for the numerical treatment of a two-objective optimization problem, possibly subject to equality constraints, was proposed. The method was devised to be adapted to cases where an initial design-point is known and such that one of the two disciplines, considered to be preponderant, or fragile, and said to be the primary discipline, achieves a local or glo...
متن کاملApplication of MGDA to domain partitioning
This report is a sequel to several publications in which a Multiple-Gradient Descent Algorithm (MGDA) has been proposed and tested for the treatment of multi-objective differentiable optimization. The method was originally introduced in [4], and again formalized in [6]. Its efficacy to identify the Pareto front has been demonstrated in [9], in comparison with an evolutionary strategy. Finally, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012